數學教案- 函數(通用2篇)
數學教案- 函數 篇1
課題函數(二)
一、教學目的
1.使學生理解自變量的取值范圍和函數值的意義。
2.使學生理解求自變量的取值范圍的兩個依據。
3.使學生掌握關于解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數的自變量取值范圍的求法,并會求其函數值。
4.通過求函數中自變量的取值范圍使學生進一步理解函數概念。
二、教學重點、難點
重點:函數自變量取值的求法。
難點:函靈敏處變量取值的確定。
三、教學過程
復習提問
1.函數的定義是什么?函數概念包含哪三個方面的內容?
2.什么叫分式?當x取什么數時,分式x+2/2x+3有意義?
。ù穑悍帜咐锖凶帜傅挠欣硎浇蟹质,分母≠0,即x≠3/2。)
3.什么叫二次根式?使二次根式成立的條件是什么?
(答:根指數是2的根式叫二次根式,使二次根式成立的條件是被開方數≥0。)
4.舉出一個函數的實例,并指出式中的變量與常量、自變量與函數。
新課
1.結合同學舉出的實例說明解析法的意義:用教學式子表示函數方法叫解析法。并指出,函數表示法除了解析法外,還有圖象法和列表法。
2.結合同學舉出的實例,說明函數的自變量取值范圍有時要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個依據是:
。1)自變量取值范圍是使函數解析式(即是函數表達式)有意義。
。2)自變量取值范圍要使實際問題有意義。
3.講解P93中例2。并指出例2四個小題代表三類題型:(1),(2)題給出的是只含有一個自變量的整式;(3)題給出的是只含有一個自變量的分式;(4)題給出的是只含有一個自變量的二次根式。
推廣與聯想:請同學按上述三類題型自編3個題,并寫出解答,同桌互對答案,老師評講。
4.講解P93中例3。結合例3引出函數值的意義。并指出兩點:
。1)例3中的4個小題歸納起來仍是三類題型。
。2)求函數值的問題實際是求代數式值的問題。
補充例題
求下列函數當x=3時的函數值:
。1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4) 。
。ù穑海1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)
小結
1.解析法的意義:用數學式子表示函數的方法叫解析法。
2.求函數自變量取值范圍的兩個方法(依據):
。1)要使函數的解析式有意義。
、俸瘮档慕馕鍪绞钦綍r,自變量可取全體實數;
②函數的解析式是分式時,自變量的取值應使分母≠0;
、酆瘮档慕馕鍪绞嵌胃綍r,自變量的取值應使被開方數≥0。
。2)對于反映實際問題的函數關系,應使實際問題有意義。
3.求函數值的方法:把所給出的自變量的值代入函數解析式中,即可求出相慶原函數值。
練習:P94中1,2,3。
作業 :P95~P96中A組3,4,5,6,7。B組1,2。
四、教學注意問題
1.注意滲透與訓練學生的歸納思維。比如例2、例3中各是4個小題,對每一個例題均可歸納為三類題型。而對于例2、例3這兩道例題,雖然要求各異,但題目結構仍是三類題型:整式、分式、二次根式。
2.注意訓練與培養學生的優質聯想能力。要求學生仿照例題自編題目是有效手段。
3.注意培養學生對于“具體問題要具體分析”的良好學習方法。比如對于有實際意義來確定,由于實際問題千差萬別,所以我們就要具體分析,靈活處置。
數學教案- 函數 篇2
函數(-)
教學目的:
1.了解常量與變量的意義,能分清實例中的常量與變量;
2.了解自變量與函數的意義,能列舉函數的實例,并能寫出簡單的函數關系式;
3.培養學生觀察、分析、抽象、概括的能力;
4.對學生進行相互聯系、絕對與相對、運動變化的辯證唯物主義觀點的教育和愛國、愛黨、愛人民的教育。
教學直點:
函數概念的形成過程。
教學難點 :
理解函數概念。
教具:
多媒體。
教學過程 :
一、創設情境
首先請同學們看一組境頭:(微機播放今夏抗洪片段)喚起學生對今夏洪水的回憶,對學生滲透愛國、愛黨、愛人民的教育。
二、形成概念
(一)變量與常量概念的形成過程
1.舉例、歸納
引例1:沙市今夏7、8兩個月的水位圖(微機示圖)
學生觀察水位隨時間變化的情況,(微機示意)引出“變量”。
引例2:汽車在公路上勻速行駛(微機示意)
學生觀察汽車勻速行駛的過程,加深對變量的認
識,引出“常量”。
設問:一個量變化,具體地說是它的什么在變?什么不變呢?(微機顯示:下方汽車勻速行駛,上方S的值隨t的值變化而變化。)
引導學生觀察發現:是量的數值變與不變。
歸納變量與常量的定義并板書。
2.剖析概念
常量與變量必須存在于一個變化過程中。判斷一個量是常量還是變量,需著兩個方面:①看它是否在一個變化的過程中,②看它在這個變化過程中的取植情況。
3.鞏固概念
練習一:
1.向平靜的湖面投一石子,便會形成以落水點為圓心的一系列同心圓(微機示意)。①在這個變化過程中,有哪些變量?②若面積用S,半徑用R表示,則S和R的關系是什么?;π是常量還是變量?③若周長用C,半徑用R表示,C與R的關系式是什么?
2.(見課本第92頁練習1)
學生回答后指出:常量與變量不是絕對的,而是對于一個變化過程而言的。
。ǘ┳宰兞颗c函數概念的形成過程
1.舉例、歸納
。ㄎC一屏顯示兩個引例)學生再次觀察引例1、2兩個變化過程,尋找共同之處:①一個變化過程,②兩個變量,③一個量隨另一個量的變化而變化。
若兩個量滿足上述三個條件,就說這兩個量具有函數關系。(引出課題并板書)
設問:上述第三條是形象描述兩個變量的關系,具體地說是什么意思?
以引例2說明:(微機示意)
設問:在S=30t中,當t=0.5時,S有沒有值與它對應?有幾個?
反復設問:t=l,1.5,2,3……時呢?
引導學生觀察發現:對于變量t的每一個值,變量S都有唯一的值與它對應。所以兩個變量的關系又可敘述為:對于一個變量的每一個值,另一個變量都有唯一的值與它對應。即一種對應關系。(微機出示)
在s=30t中,s與t具有這種對應關系,就說t是自變量,S是t的函數。引出“自變量”、“函數”。
歸納自變量與函數的定義并板書。
2.剖析概念
理解函數概念把握三點:①一個變化過程,②兩個變量,③一種對應關系。判斷兩個量是否具有函數關系也以這三點為依據。
3.鞏固概念
練習二:
l)某地某天氣溫如圖:(微機示圖)氣溫與時間具有函數關系嗎?
學生回答后指出這里函數關系是用圖象給出的。
2)宜昌市某旅游公司近幾年接待游客人數如表:(微機示表)游客人數與時間具有函數關系嗎?學生回答后指出這里函數關系是用表格給出的。
3)在S=?d中,S與R具有函數關系嗎?C=ZπR中,C與R呢?(微機顯示變化過程)學生回答后指出這里函數關系是用數學式子結出的。
4)師生共同列舉函數關系的例子。
三、例題示范
(微機出示例1,并演示籬笆圍成矩形的過程。)
指導:1.籬笆的長等于矩形的周長;2.S與1的關系式,即用1的代數式表示S;3.表示矩形的面積,需先表示矩形一組鄰邊的長。
解題過程略。
變式練習:
用60m的籬笆圍成矩形,使矩形一邊靠墻,另三邊用籬笆圍成,(微機示意)
1.寫出矩形面積s(m?)與平行于墻的一邊長l(m)的關系式;
2.寫出矩形面積s(m?)與垂直于墻的一邊長l(m)的關系式。并指出兩式中的常量與變量,函數與自變量。
四、反饋練習(微機示題)
五、歸納小結
1.四個概念:常量與變量,函數與自變量。
2.兩個注意:①判斷常量與變量看兩個方面。②理解函數概念把握三點。
六、布置作業
1.必做題:課本第95頁,練習1、2.
2.思考題:
、僭 y= 2x+l中,y是x的函數嗎??=x中,y是X的函數嗎?
、谝2的s=30t中,t可以取不同的數值,但t可以取任意數值嗎?
教案設計說明
根據本節內容的特點——抽象、難懂的概念深。
我按以下思路設計本課:堅持以觀察為起點,以問題為主線,以培養能力為核心的宗旨;遵照教師為主導,學生為主體,訓練為主線的教學原則;遵循特殊到一般,具體到抽象,由淺入深,由易到難的認識規律。教學過程 特突出以下構想:
一、真景再現,引人入勝
上課后,首先播放一組動人的抗洪鏡頭,把學生分散的思維一下子聚攏過來,學生情緒、課堂氣氛調控到最佳狀態,為新課的開展創設良好的教學氛圍。因為它真實、貼近學生的生活,所以喚起他們對今夏所遭受的那場特大洪水的回憶,教師有機地對學生滲透愛國、愛黨、愛人民的教育。
二、過程凸現,緊扣重點
函數概念的形咸過程是本節的重點,所以本節突出概念形成過程的教學,把過程分為三個階段:歸納、剖析與鞏固。第一階段里舉學生熟悉的、形象生動的例子,引導學生觀察、分析爾后歸納。第二階段里幫助學生把握概念的本質特征,提出注意問題。第三階段里引導學生運用概念并及時反饋。同時在概念的形成過程中,著意培養學生觀察、分析、抽象、概括的能力。引導學生從運動、變化的角度看問題時,向學生滲透辯證唯物主義觀點的教育。
三、動態顯現,化難為易
函數概念的抽象性是常規教學手段無法突出的,為了掃除學生思維上的障礙,本節充分發揮多媒體的聲、像、動畫特征,使抽象的問題形象化,靜態方式的動態化,直觀、深刻地揭示函數概念的本質,突破本節的難點。同時教學活動中有聲、有色、有動感的畫面,不僅叩開學生思維之門,也打開他們的心靈之窗,使他們在欣賞、享受中,在美的熏陶中主動的、輕松愉快的獲得新知。
四、例子展現,多方滲透
為了使抽象的函數概念具體化,通俗易懂,本節列舉了大量的生活中的例子和其他學科中的例子,培養學生的發散思維、加強學科間的滲透,知識問的聯系,也增強學生學數學、的意識。